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LETTER TO THE EDITOR 

Diffusion on percolation clusters at criticality 

D Ben-Avraham and S Havlin 
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 3 September 1982 

Abstract. The concept of fractal dimensionality is used to study the problem of diffusion 
on percolation clusters. We find from Monte Carlo simulations that the fractal dimensional- 
ity of a random walk on a critical percolation cluster in three-dimensional space is 
D = 3.3+0.1 where the size of the cluster is restricted to be larger than the span of the 
walk, and is D ' = 3 . 9 i O . l  for a walk on clusters not subject to this restriction. For 
two-dimensional space we find D =D'=2.7+0.1.  The exponent D (and D') is related 
to the scaling of the average length R of N steps via R CC N .  The fracton dimensionality 
which is related to the density of states was found to be 6= 1.26&0.1. These results are 
in good agreement with the predictions of Alexander and Orbach. 

The geometrical structure of percolation clusters has recently been the subject of 
considerable interest (Stauffer 1979,1980, Mandelbrot 1982). In particular, at present 
two different models exist for the geometrical structure of the backbone at percolation: 
the node and links picture (de Gennes 1976, Skal and Shklovskii 1974, 1975) and the 
self-similarity picture with fractal dimensionality (Gefen et af 1981, Alexander and 
Orbach 1982). 

In this Letter we present a numerical and theoretical study of diffusion on fractals 
and on percolation clusters. Our results strongly support the diffusion model presented 
very recently by Alexander and Orbach (1982) (hereafter referred to as AO) based 
on the fractal picture of the percolation cluster (Gefen et a1 1981). It is shown 
numerically, as predicted by AO, that the relevant dimensionality appearing in the 
density of states for fractals is the fructon dimensionality d (defined by AO) which is 
related to the diffusion exponent D (the fractal dimensionality of the walk) and the 
fractal dimensionality d of the percolation cluster. We have measured, numerically, 
the fractal dimensionality of the diffusion walk, D, as well as the fracton dimensionality 
d appearing in the density of states. The numerical values obtained for these quantities 
are in good agreement with the predictions of AO. 

The early work regarding diffusion on percolation clusters which was used as a 
powerful tool in the study of transport properties (de Gennes 1976, Mitescu et a1 
1978) considered mostly the region of non-anomalous diffusion, where R CC N. As 
Mitescu er a1 (1978) recognise, and as we show elsewhere (Havlin and Ben-Avraham 
1982a), this region occurs only for sufficiently long walks in systems above the 
percolation threshold. However, we are interested in properties at the threshold where 
anomalous behaviour associated with fractal dimensionality of the clusters can be 
expected for all lengths of walk. 

In a recent Letter we presented (Havlin and Ben-Avraham 1982b) a method of 
measuring the fractal dimensionality of a walk. We defined the concept of local fractal 
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where (Rh) is the mean square length for an ensemble of walks, of all sections 
consisting of N steps. If D ( N )  = D constant, (RL)D’2EN and D is the fractal 
dimensionality of the walk. 

We first examine diffusion on an exact fractal with d = In 3/ln 2, the triangular 
Sierpinski gasket (Gefen et  a1 1981). For this system the walks starting at a symmetry 
point and ending after N steps were enumerated exactly for N =s 250. We find that 
diffusion on this fractal is anomalous (D # 2), with (R&)D’2EN whereD = 2.32k0.01. 
The value of D was obtained from the best fit of In N against In RN shown in figure 
1. This is in excellent agreement with the result D = In 5/ln 2 = 2.322 predicted by AO. 

In &E$ 

Figure 1. Plot of In N as a function of In Jm averaged on all walks up to 200 steps 
traced on a triangular Sierpinski gasket. 

In the following we present the results of Monte Carlo calculations of diffusion 
on percolation clusters in two- and three-dimensional space at critical site percolation. 
The results are consistent with the assumption that such clusters have a statistical 
self-similarity property, i.e. that they are statistical fractals. 

Very recently AO , using this assumption, have developed a theory of diffusion on 
critical percolation clusters, as well as the density of states for these clusters. Their 
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main results are 

( R  & ) D / 2  CC N ( 2 )  

D = 2 + r =  2 + ( t  - P ) / v  ( 3 )  
where v, P and t are the critical exponents for the correlation length, order parameter 
and conductivity respectively. They also find that the probability that a walk returns 
to the origin after N steps is 

with 

p o ( ~ ) -  v ( N ) - ~ - R ( N ) - " N - ~ / D  - ~ - d / *  (4) 
where V ( N )  is the total volume available on the fractal cluster within the diffusion 
distance, 2 is the fractal dimensionality of the percolation cluster and d is the fracton 
dimensionality, i.e. the critical index governing the density of states on fractals. 

In order to check the theory we simulated critical clusters on square and cubic 
lattices (d = 2 , 3 ) .  A random walk was generated on these clusters. The clusters were 
chosen to be much larger than the span of the walks so as to avoid end effects. The 
LFD of the walks was measured and found to be nearly constant with N as shown in 
figure 2 .  The best fits of In N against In ( R N )  and In Po(N) against In N are shown in 

I I 

d - 3  

50 100 150 
N 

Figure 2. Plot of LFD D ( N )  as a function of N for a set of 2 X lo4 walks of 320 steps 
traced on 200 site percolation clusters restricted to be larger than the span of each walk. 



L694 Letter to the Editor 

figures 3 and 4 respectively. The results for diffusion are presented in table 1. A best 
fit yieldsD =2.68*0.05 or f=0.68*0.05 for d = 2  a n d D  = 3.3kO.l or f =  1.3h0.1  
for d = 3. For both d = 2 and d = 3, the best fit for the slope of In Po(N) against In N 
is i d =  0.63k0.05 giving d =  1.26*0.10. These results confirm that irregular 
exponents exist for diffusion on percolation clusters. The numerical values of the 
exponents are somewhat lower but in overall good agreement with the predictions of 
AO, as calculated from equation (3), with the numerical values given by Stauffer (1979). 
For d = 2, D = 2.8 and d =  1.36; for d = 3, D = 3.55 and d =  1.42. The small 
deviations from the theoretical predictions are apparently due to higher-order terms 
(corrections to scaling) which affect the results at small N, as seen in figures 3 and 4. 

Diffusion on percolation clusters of unrestricted size is also of interest. We simulate 
diffusion on critical clusters taking into account all the clusters generated, without 
eliminating those smaller than the span of the walks. The fractal dimensionality D’ 
describing diffusion in this case is different from D found above. Our results are 
presented in figure 5 .  A best fit yields D’=2.76*O0.O5 for d = 2  and D’=3.9*0.1 
for d = 3. This deviation can be explained by the following simple arguments. The 
clusters were generated by a cluster-growth method (Leath 1976, Alexanderowicz 
1980) so that the distribution for clusters of mass S is 

P ( S )  -S1? 

0 1 2 3 
In 

Figure 3. Plot of In N as a function of In Jm for the same walks described in figure 
2. The open circles are the numerical data and the straight line is the best fit. 
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Figure 4. Plot of In Po(N)  against In N for the same walks described in figure 2. The open 
circles are the numerical data and the straight line is the best fit. 

Table 1. Diffusion exponents calculated in the present work. 

d D (present work) D(Ao) d (present work) ~ ( A o )  D' (present work) 

2 2.68*0.05 2.8 1.26*0.10 1.36 2.76i0.05 
3 3.3 *0.10 3.55 1.26k0.10 1.42 3.9 kO.10 

It is reasonable to expect that the mean square distance of N steps on our S cluster 
is (R:), where 

Here Rg is the average squared size of an S cluster: 

(7) R - S2/'. 

Using (3, (6) and (7) the mean (RL) (on all clusters) can be calculated and we find 
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In c R i >  
Figure 5. Plot of In N against In J m  for 2 x lo4 walks of 320 steps traced on 2 x lo4 
site percolation clusters with no restrictions on the size of the cluster. The open circles 
are the numerical data and the straight line is the best fit. 

The quantity SN is the limiting mass in equation (6 ) ,  i.e. 
SZ'-((RL)s, - N ~ / D  (9) 

Thus the two contributions in equation (8) are of the same order of magnitude and 

(10) 

(11) 
where the last equation in (11) is derived from scaling laws. We find from our 
measurements (see table 1) that (DID72 = 0.97 *0.05 yielding 7 2  = 2.03 f 0.05 and 

= 0.85 f 0.05 yielding 7 3  = 2.13 k0.05 where the subscripts 2 and 3 denote 
the dimension. These results are in good agreement with known results (Stauffer 1979). 

We conclude that our direct Monte Carlo measurements of the fractal dimensional- 
ity of a random walk on a percolation cluster and of the fracton dimensionality 
confirm the predictions of AO. The anomalous values obtained for the fractal 
dimensionality of the diffusion walk and for the fracton dimensionality, which are in 
good agreement with theory, strongly support the basic assumption of the model 
concerning the fractal nature of the percolation cluster. 

( R $ )  - N ~ / D + ( ~ - T ) c ? / D  - N ~ / D '  

or 
o/D'= 1 +:6(2 -7 )  = 1 -p/2V, 
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